Statistical Systems Modernization

David Rozenshtein, PhD and Sandip Mehta Omnicom Consulting Group, Inc.

September 2025

Who and What

Omnicom Consulting Group, Inc.

Small firm; six technical personnel

Contracted with the Bureau of Economic Analysis (BEA) under U.S. Department of Commerce

Primary builders of current generation of BEA's modernized systems

Modernized econometric systems – all interconnected!

US national and regional gross domestic product (GDP)

US national and regional personal income

US industry economic accounts

US foreign direct investment (inward and outward)

US balance of payments

Environment

Large data volumes – efficiency is important

Long histories – continuity is important

Evolving business logic – flexibility is important

Short release cycles – support for "quick reactions" is important

Small development team – reusability is important

So, how do we get it done?

Approach

Legacy / Conventional	Modernized
Business logic embedded in code	Business logic expressed as metadata
Blackbox computations	Computations are transparent and auditable
Custom-designed isolated systems; many technologies	Common architecture and tools across all systems; fewer technologies
Changes in business methodology require code changes by programmers	Analysts change metadata, directly affecting functionality; no code changes

Metadata-based Systems

Express business logic as metadata

We use metadata to also describe **computations**!

Write business functionality-neutral code to interpret the metadata

Benefits

- Business logic can be changed without code changes
 - Allows for many simultaneous use cases
 - Shorter time to market and smaller programming team
 - **Nimble** approach that keeps up with changes in economy and ways of measuring it
- Metadata can be programmatically validated
- Allows for auditability of computations

Transparent and Auditable Computations

Computations are complex

Our modernized systems provide calculation audits

Reverse chains of actual computation steps

Enabled by metadata-driven architecture

Very difficult to do in a conventional system

Results in better quality estimates

Makes analysis of results **self-service** for senior managers

Architecture

Business computations are done directly in the database layer, programmed in SQL

Simpler architecture

Faster system

Smaller code footprint

Common Tool Examples

Multi-dimensional aggregators

Formula evaluation engines

Data search, validation and auto-edit tools

Table/report generation tools

Data Depth and Breadth

System	History Start Year
U.S. GDP estimates	1929
U.S. Personal Income estimates	1929
 U.S. Balance of Payments International Transaction Account Financial Account Detail & International Investment Positions International Services Trade 	1960 1976 1999
U.S. Foreign Direct InvestmentInward investmentOutward investmentServices trade	1992 1994 2006

Data Depth and Breadth

System	History Start Year
 U.S. industry economic accounts GDP by Industry Input-Output Accounts TiVA – Trade in Value Added 	1997 1997 2007
 U.S. regional estimates State personal income State GDP County personal income County GDP Outdoor recreation 	1929 1997 1969 2001 2012

Sample Performance Improvements

System	Improvement
U.S. GDP comprehensive update, released every 5 years	~10+ times
U.S. GDP "current" (quarterly) estimate, released monthly	~20-50 times
Regional Personal Income comprehensive update, released every 5 years	Bulk recomputation: ~5 times Incremental recomputation: ~100+ times
Direct Investment Division data disclosure control (i.e., suppressions)	From completely manual (~3 months) to mostly automated (few days)
Balance of Payments Division annual update Services Survey processing	From largely manual (~6 weeks) to automated (~3 hours)

Analyst Empowerment

Typically, there is a disconnect between analysts who **define** business logic and programmers who **implement** it

In our modernized systems, business logic is represented by **metadata**

Metadata is authored and maintained by analysts; analysts become implementors

Facilitates shared responsibility and workload

Allows for a small team of technical development staff

Summary

Our statistical systems modernization program is not just about speeding-up calculations or the use of more modern technologies and tools

Instead it is about **re-imagining** and **re-engineering** the estimate production process, and making it effective for everyone involved

Metadata approach allows for more formal, verifiable specifications

Audits allow for more calculation transparency, and easier analysis

System efficiency allows personnel **not** to spend nights working, especially during final pre-release crunch periods

Chosen architecture drastically reduces development and maintenance duration and costs

Collaborative development approach facilitates effective knowledge transfer, and ensures system longevity

Result: Better quality estimates

Some Technical Details

Heavy use of **tree** and **graph** data structures to model and implement computations

Novel and efficient application of **breadth-first** tree and graph algorithms suitable for SQL

Use of C#, Python and R to **extend** SQL expressive power as needed